Time limit at peak speed without prior warm-up: Effects on test duration, heart rate and rating of perceived exertion

Guilherme H.S. Kimura, Francisco A. Manoel, Diogo H. Figueiredo, Cecília S. Peserico, Fabiana A. Machado
State University of Maringá - UEM, Brazil.

Recibido: 01.02.2018
Aceptado: 28.06.2018

Key words:
Running. Exercise test. Physical endurance.

Abstract

Summary Background: Time limit $\left(t_{\text {lim }}\right)$ at peak speed $\left(V_{\text {peak }}\right)$, that is maximal time that an individual can keep running at maximal intensity, is used to prescribe interval durations during interval training. The aim of this study was to compare two protocols (without or with 15 minutes of warm-up) for the $t_{\text {lim }}$ determination at 100% of $\mathrm{V}_{\text {peak }}$ in untrained men. Material and method: Twelve untrained young men performed three running tests on a treadmill: one maximal incremental test to determine $V_{\text {peak }}$ and two rectangular tests, performed in randomized order, without a warm-up ($\mathrm{t}_{\text {limo }}$) or with a 15-minute warm-up duration ($\mathrm{t}_{\text {lim } 15}$) at 60% of $\mathrm{V}_{\text {peak }}$ to determine the $\mathrm{t}_{\text {lim }}$ at 100% of $\mathrm{V}_{\text {peak' }}$, after the warm-up the tests were performed at the speed of the individual $\mathrm{V}_{\text {peak }}$ until volitional exhaustion. During the tests, heart rate (HR) and rating of perceived exertion (RPE) were monitored and blood lactate sampling was collected prior to session ($L A_{\text {pre }}$); immediately post-exercise $\left(L A_{0-m i n}\right)$; 3 min $\left(L A_{3 \text {-min }}\right), 5$ min $\left(L A_{5-\text {-min }}\right)$ and 7 min $\left(L A_{7 \text {-min }}\right)$ post-exercise to determine lactate concentrations. The Shapiro-Wilk test was used and confirmed the normality of the data distribution, with maximal and submaximal values compared using Student's t test for dependent samples. Results: Test duration at $\mathrm{t}_{\text {lim0 }}$ was significant higher than that at $\mathrm{t}_{\text {lim15 }}(P=0.02)$. Additionally, different $\mathrm{t}_{\text {lim }}$ protocols influenced HR and RPE submaximal responses and did not modify lactate concentrations or maximal variables ($H R_{\max }$ and $R P E_{\max }$). Conclusions: These findings suggest that the determination of $\mathrm{t}_{\lim }$ at 100% of $\mathrm{V}_{\text {peak }}$ without a prior warm-up led to a higher test duration in untrained men.

Tiempo límite en la velocidad máxima sin calentamiento previo: efectos sobre la duración de la prueba, frecuencia cardíaca y grado de esfuerzo percibido

Abstract

Resumen Objetivos: Tiempo límite ($\mathrm{t}_{\text {lim }}$) en la velocidad máxima ($\mathrm{V}_{\text {pico }}$), que es el tiempo máximo que un individuo puede permanecer corriendo en la intensidade máxima, se utiliza para prescribir la duración de los intervalos durante el entrenamiento interválico. El objetivo de este estudio fue comparar dos protocolos (sin o con 15 minutos de calentamiento) para la determinación de $\mathrm{t}_{\text {lim }}$ al 100% de la $\mathrm{V}_{\text {pico }}$ en hombres no entrenados. Material y método: Doce jóvenes no entrenados realizaron tres pruebas de carrera en la cinta rodante: una prueba incremental máxima para determinar $\bigvee_{\text {pico }}$ y dos pruebas rectangulares, realizadas en orden aleatorio, sin calentamiento ($\mathrm{t}_{\text {limo }}$) o con una duración de calentamiento de 15 minutos $\left(\mathrm{t}_{\text {lim } 15}\right)$ al 60% de la $\bigvee_{\text {pico }}$ para determinar el $\mathrm{t}_{\text {lim }}$ al 100% de la $\bigvee_{\text {picoo }}$ después del calentamiento las pruebas fueron realizaradas en la velocidad de la $\vee_{\text {pico }}$ individual hasta el agotamiento voluntario. Durante las pruebas, la frecuencia cardíaca (FC) y el grado de esfuerzo percibido (RPE) fueron monitorizadas y se tomaron muestras después del ejercicio para determinar las concentraciones de lactato. Se utilizó la prueba de Shapiro Wilk y se confirmó la normalidad de la distribuición de los datos, con los valores máximos y submáximos comparados utilizando la prueba t de Student para muestras dependientes. Resultados: La duración de la prueba en el $t_{\text {lim } 0}$ fue significativamente mayor que aquella en el $t_{\text {lim } 15}(P=0.02)$. Además, los diferentes protocolos de $t_{\text {lim }}$ influenciaron las respuestas submáximas de FC y RPE y no modificaron las concentraciones de lactato o las variables máximas ($\mathrm{FC}_{\text {max }}$ y $R P E_{\text {max }}$). Conclusiones: Estos resultados sugieren que la determinación del $t_{\text {lim }}$ en la 100% de la $\mathrm{V}_{\text {pico }}$ sin calentamiento prévio lleva a una mayor duración de la prueba em hombres no entrenados.

[^0]
Introduction

Endurance racing has been gaining popularity recently; thus, the training prescriptions linked to running performance improvements have received great attention ${ }^{1,2}$. Such prescriptions should be planned for each individual according to the physiological (e.g., heart rate [HR]), psychological (e.g., rating of perceived exertion [RPE]), and performance variables (peak speed $\left[\mathrm{V}_{\text {peak }}\right]$, time limit $\left[\mathrm{t}_{\mathrm{lim}}\right]$) that control and monitor effort intensity ${ }^{3}$.

The $t_{\text {lim }}$ is the maximal time that an individual can maintain a given exercise intensity ${ }^{4}$, such as $\vee_{\text {peak }}$ occurrence velocity. The original protocol for the $t_{l i m}$ determination included a prior 15-minute warm-up at an intensity equivalent to 60% of the reference velocity (e.g. $V_{\text {peak }}$ or velocity associated with the occurrence of maximal oxygen uptake $\left.\left[\mathrm{VVO}_{2 \text { max }}\right]\right)$; after the warm-up, without interval, the velocity is automatically increased to 100% intensity, at which the individual should remain as long as possible until volitional exhaustion ${ }^{4}$. However, warm-up duration (5, 10 or 15 minutes) modified the test duration $\left(\mathrm{t}_{\mathrm{lim}}\right)^{5}$.

Studies demonstrated that various warm-up types, such as stretching (static and dynamic) ${ }^{6}$, whole-body vibration ${ }^{7}$, and the traditional warm-up consisting of low-intensity cycling ${ }^{8}$, could positively or negatively influence aerobic performance. For instance, Tomaras \& Macintosh ${ }^{8}$ investigated a sample of highly trained male track cyclists and compared the traditional warm-up (WU) for a 200-m sprint in a track cycling competition with an experimental WU that was designed to be shorter and less intense and examined the fatigue and cycling performance after traditional and experimental WU. Results from this study showed that peak active twitch torque was lower after the traditional than experimental WU when expressed as percentage of pre-warm-up amplitude, and Wingate test performance was better after experimental WU than traditional WU; indeed, the traditional track cyclist's WU results in significant fatigue, which corresponds with impaired peak power output, and shorter and lower intensity WU permits a better performance.

However, a recent study showed that warm-up duration (5,10 or 15 minutes) modified the test duration ($\mathrm{t}_{\mathrm{lim}}$) of untrained men in which the warm-up comprising 15 minutes led the participants to exercise for a shorter time compared to other $t_{\text {lim }}$ protocols ${ }^{5}$. Since $t_{\text {lim }}$ is a variable that is used to determine the optimal stimulus durations in interval training sessions ${ }^{9-11}$, this longer or short duration altered by warm-up will directly impact this prescription.

Nevertheless, to the best of our knowledge, there is still a lack of studies that analyzed the best duration of the warm-up ${ }^{5}$ and knowing the importance of warm-ups prior to exercise and that the duration modifies the $t_{\text {lim }}{ }^{5}$, the aim of this study was to compare two protocols (without and with a 15 -minute warm-up) for the $\mathrm{t}_{\text {lim }}$ determination at 100% of $\bigvee_{\text {peak }}$ in untrained men. Our hypothesis is that the $t_{\text {lim }}$ determined without a warm-up will differ from that of the $t_{\text {lim }}$ performed with a 15-minute warm-up.

Material and method

Twelve untrained young men, not included in systematic running training programs, with training volume less than 20 km per week,
volunteered to participate in this study. The 5-km running times reported by participants were between 25 and 35 minutes, with a pace between 8.6 and $12 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ ($\cong 36.1$ and 50.4% of the world record). The main characteristics of the participants were: age 21.4 ± 2.3 years, height $1.8 \pm 0.1 \mathrm{~m}$, body mass $76.7 \pm 10.9 \mathrm{~kg}$, body mass index (BMI) $24.2 \pm 2.8 \mathrm{~kg} \cdot \mathrm{~m}^{-2}$ and body fat $15.3 \pm 4.2 \%$. Prior to testing, written informed consent was obtained from all participants. The experimental protocol was approved by the local Human Research Ethics Comittee (\#1.262.502/2015) and appropriate standards for human experimentation have been followed.

Experimental overview

Participants performed three tests on a motorized treadmill (Super ATL Inbrasport, Porto Alegre, Brazil), with the gradient set at 1%. In the first visit the evaluation of the anthropometric measurements was performed, and the participants were submitted to a maximal incremental test to determine $\vee_{\text {peak }}$. After, in a randomized order, two rectangular tests with warm-up durations of 15 minutes and without warm-up were performed to determine the $\mathrm{t}_{\text {lim }}$ at 100% of $\mathrm{V}_{\text {peak' }}$. The tests were performed over 2 weeks, with each test separated from the other by 48 hours. For all tests, participants were instructed to stay well-rested, well-nourished, and well-hydrated, wearing lightweight comfortable clothing. Participants were also instructed to avoid eating for 2 hours before the maximal exercise test, to abstain from caffeine and alcohol and to refrain from strenuous exercise for 48 hours before testing. Tests were conducted at the same time of the day, under normal laboratory conditions (temperature $20-22^{\circ} \mathrm{C}$, relative humidity $50-60 \%$).

Incremental exercise test to determine $\mathbf{V}_{\text {peak }}$

After a warm-up, comprised walking at $6 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ for three minutes, the continuous protocol started with a speed of $8 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and increased by $1 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ between each successive 3 -minute stage until participants reached volitional exhaustion ${ }^{12}$. The $V_{\text {peek }}$ of the incremental test was calculated as the speed of the last complete stage added to the completed fraction of the incomplete stage ${ }^{13}$, calculated according to the equation:

$$
V_{\text {peak }}=V_{\text {complete }}+(\mathrm{t} / T \times \text { speed increment })
$$

where $\mathrm{V}_{\text {complete }}$ is the running speed of the last complete stage, t the time in seconds sustained during the incomplete stage, and T the time in seconds required to complete a stage (i.e., 180 seconds), and speed incremental is the speed load increment. The maximal effort was deemed to be achieved if the incremental test met two of the following criteria: 1) $\mathrm{LA}_{\text {peak }} \geq 8 \mathrm{mmol} \cdot \mathrm{L}^{-14}$ 2) $\mathrm{HR}_{\text {max }} \geq 100 \%$ of endurance-trained age-predicted $H R_{\text {max }}$ using the age-based (207-0.7 \times age) equation ${ }^{15}$ and 3) $R P E_{\max } \geq 19$ in the 6-20 Borg Scale ${ }^{16}$.

Rectangular tests to determine the $\mathrm{t}_{\text {lim }}$ at $\mathrm{V}_{\text {peak }}$

The two rectangular tests differed only by presence or absence of the warm-up of 15 minutes. After the warm-up at 60% of $V_{\text {peak }}$ the treadmill speed was quickly increased (in approximately 6 seconds) to the individual at 100% of $\mathrm{V}_{\text {peak }}{ }^{4}$. Participants were also encouraged to invest maximal effort and the time of permanency in this intensity was considered the $\mathrm{t}_{\text {lim }}$ at 100% of $\mathrm{V}_{\text {peak }}$.

Psychophysiological and physiological variables

Before testing participants were familiarized with the 6-20 Borg scale ${ }^{16}$, which was used to determine the rating of perceived exertion (RPE) during the last 15 seconds the stages of $V_{\text {peak }}$ and every minute in $t_{\text {lim }}$. The highest RPE value was adopted as the maximal RPE (RPE max). Heart rate (HR) was monitored throughout the tests (Polar RS800sd, Kempele, Finland) and in the last 10 seconds of each stage da $\vee_{\text {peak }}$ and every minute in $\mathrm{t}_{\text {lim }}$ HR was registered; the maximal heart rate $\left(H R_{\max }\right)$ was defined as the highest HR value observed during the tests ${ }^{15}$. Earlobe capillary blood samples ($25 \mu \mathrm{~L}$) were collected in a capillary tube to determine the lactate concentrations. These samples were collected before $\left(L A_{\text {pre }}\right)$ all exercise tests, after the incremental test at the third $\left(L_{3} \mathrm{~B}_{\text {-min }}\right)$ and fifth $\left(\mathrm{LA}_{5 \text {-min }}\right)$ minutes, and at the end $\left(L A_{0 \text {-min }}\right)$, at the $L A_{3-\text { min }}, L A_{5 \text {-min }}$ and seventh $\left(L A_{7 \text {-min }}\right)$ minutes after the rectangular tests. For the $L A_{\text {pre }}$ the participants remained at rest for 15 minutes in a comfortable chair prior to the sampling procedure. For the $L A_{0 \text {-min }}$ blood sampled collection the participants remained standing upright on the treadmill, and for the $L A_{3-\text { min }^{\prime}} L A_{5 \text {-min }} L A_{7 \text {-min }}$ samples the participants remained sitting in a comfortable chair. Peak blood lactate concentration ($\left(\mathrm{A}_{\text {peak }}\right)$ was defined for each participant as the highest post-exercise blood lactate concentration value. The samples were subsequently determined by electroenzymatic methods using the YSI 2300 STAT (Ohio, USA) automated analyzer (accuracy $\pm 2 \%$).

Statistical analysis

Data are presented as mean \pm SD and were analyzed using the Statistical Package for the Social Sciences software v. 20.0 (SPSS Inc., Chicago, IL, USA). The Shapiro-Wilk test was used and confirmed the normality of the data distribution. Maximal and submaximal values were compared using Student's t test for dependent samples. Statistical significance was set at $P<0.05$.

Results

The variables obtained during the exhaustion incremental test to determine the $\mathrm{V}_{\text {peak }}$ were: $\mathrm{V}_{\text {peak }}=12.7 \pm 1.2 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, test duration $=17.1$ $\pm 3.8 \mathrm{~min}, \mathrm{HR}_{\max }=187 \pm 8.7 \mathrm{bpm}, \mathrm{RPE}_{\max }=19.8 \pm 0.5$ and $\mathrm{LA}_{\text {peak }}=8.6$ $\pm 3.2 \mathrm{mmol} \cdot \mathrm{L}^{-1}$.

Table 1 compares $t_{\text {lim }}$ test duration, maximal variables $\left(H R_{\max ^{\prime}} \mathrm{RPE}_{\text {max }^{\prime}}\right.$ and $\left.L A_{\text {peak }}\right)$ and post-test lactate concentrations obtained during the two tests. Test duration at $\mathrm{t}_{\text {limo }}$ was significantly higher than that at $\mathrm{t}_{\text {lim15 }}$ ($P=0.02$). However, no significant difference was seen in the other variables.

Comparisons between HR and RPE values obtained during the two tests for $\mathrm{t}_{\text {lim }}$ determination are shown in Table 2. Only the minutes in which the participants remained throughout the two tests were analyzed. Significant differences were noted in the HR and RPE values until the fifth minute ($P \leq 0.01$), in the RPE value at the sixth minute $(P=0.04)$, and in HR value at seventh minute ($P=0.02$).

Table 1. Comparison between the variables: test duration (min), $\mathrm{HR}_{\text {max }}(\mathrm{bpm}), \mathrm{RPE}_{\text {max }}(6-20, \mathrm{AU})$ and blood lactate concentrations (mmol $\cdot \mathrm{L}^{-1}$) obtained during the $\mathrm{t}_{\text {lim0 }}$ and $\mathrm{t}_{\text {lim15 }}(\mathrm{N}=12)$.

Variables	$\mathrm{t}_{\text {limo }}$	$\mathbf{t}_{\text {lim15 }}$	P
Test duration (min)	9.4 ± 2.2	$6.0 \pm 2.0^{*}$	0.02
$\mathrm{HR}_{\text {max }}$ (bpm)	184 ± 11.0	184 ± 10.9	0.80
$R P E_{\text {max }}(6-20, A U)$	19.9 ± 0.3	19.9 ± 0.3	1.00
$L A_{\text {pre }}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$	1.1 ± 0.3	1.0 ± 0.2	0.30
$L A_{0 \text {-min }}\left(\mathrm{mmol}^{\left(\cdot L^{-1}\right)}\right.$	8.5 ± 2.0	7.1 ± 2.4	0.07
$\mathrm{LA}_{3 \text {-min }}\left(\mathrm{mmol}^{\left.-L^{-1}\right)}\right.$	8.6 ± 2.7	8.2 ± 3.1	1.00
$\mathrm{LA}_{5 \text {-min }}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$	8.4 ± 2.3	7.7 ± 3.3	0.11
$L A_{7 \text {-min }}\left(\mathrm{mmol}^{\text {- }} \mathrm{L}^{-1}\right)$	8.1 ± 2.3	7.5 ± 3.3	0.42
$L A_{\text {peak }}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$	9.5 ± 2.6	8.4 ± 3.3	0.13

Note: AU: arbitrary units; bpm: beat per minute; $\mathrm{HR}_{\text {max }}$: maximal heart rate; $\mathrm{LA}_{\text {pre }}$: blood lactate concentration at the before of the test; $L A_{0 \text {-min }}$: blood lactate concentration at the end of the test; $\mathrm{LA}_{3-\text { min }}$: blood lactate concentration at the third minute after the test; $\mathrm{LA}_{5 \text {-min }}$: blood lactate concentration at the fifth minute after the test; $L A_{7 \text {-min }}$: blood lactate concentration at the seventh minute after the test; $L A_{\text {peak }}$: peak blood lactate concentration; $R P E_{\text {max }}$: maximal rating of perceived exertion.
${ }^{*} P<0.05$ compared with $t_{\text {lim }}$.

Table 2. Comparison between the HR (bpm) and RPE (6-20, AU) submaximal values (min) at each minute obtained during the $\mathrm{t}_{\text {limo }}$ and $\mathrm{t}_{\text {lim15 }}$.

Time	HR (bpm)			RPE (AU)		
	$\mathbf{t}_{\text {lim0 }}$	$\mathbf{t}_{\text {lim15 }}$	P	$\mathbf{t}_{\text {limo }}$	$\mathbf{t}_{\text {lim15 }}$	P
$\begin{aligned} & 1 \mathrm{~min} \\ & (\mathrm{n}=12) \end{aligned}$	143 ± 12.4	$167 \pm 10.9 *$	<0.01	8.0 ± 2.4	$13.8 \pm 2.6^{*}$	<0.01
$2 \text { min }$	159 ± 11.6	$175 \pm 10.3^{*}$	<0.01	10.0 ± 2.9	$15.5 \pm 2.4^{*}$	<0.01
$\begin{aligned} & 3 \min \\ & (n=11) \end{aligned}$	165 ± 10.9	$180 \pm 9.2^{*}$	<0.01	13.0 ± 3.3	16.9 ± 2.1 *	<0.01
$\begin{aligned} & 4 \text { min } \\ & (n=10) \end{aligned}$	170 ± 10.8	$183 \pm 9.2^{*}$	<0.01	14.5 ± 3.1	$17.9 \pm 1.8^{*}$	<0.01
$\begin{aligned} & 5 \text { min } \\ & (n=9) \end{aligned}$	172 ± 10.7	$183 \pm 8.5^{*}$	0.01	16.0 ± 2.7	18.6 $\pm 1.7^{*}$	0.01
$\begin{aligned} & 6 \text { min } \\ & (n=6) \end{aligned}$	174 ± 10.3	184 ± 7.9	0.07	17.0 ± 2.8	18.8 $\pm 1.2^{*}$	0.04
$\begin{aligned} & 7 \text { min } \\ & (n=4) \end{aligned}$	177 ± 9.8	$185 \pm 10.5^{*}$	0.02	19.0 ± 2.3	19.8 ± 0.5	0.06
$\begin{aligned} & 8 \text { min } \\ & (n=3) \end{aligned}$	179 ± 10.5	190 ± 2.0	0.07	19.5 ± 2.2	20.0 ± 0.0	0.42

Note: AU. arbitrary units; HR. heart rate; RPE. rating of perceived exertion.
${ }^{*} P<0.05$ compared with $\mathrm{t}_{\text {limo }}$.

Discussion

This study aimed to compare the two protocols (without and with a 15 -minute warm-up) in the $t_{\text {lim }}$ determination at 100% of $\mathrm{V}_{\text {peak }}$ in untrained men. The main finding of the present study was that the different protocols for the $\mathrm{t}_{\text {lim }}$ determination had different test durations;
in particular, the absence of the 15-minute warm-up period led participants to run for a longer duration than the heating test, confirming our hypothesis. Furthermore, the $\mathrm{t}_{\text {lim }}$ protocol influenced the HR and RPE during the test responses but did not modify lactate concentrations or the maximal variables $\left(H R_{\max }\right.$ and $\left.R P E_{\text {max }}\right)$.

Previous investigations determined $\mathrm{t}_{\text {lim }}$ using a standard protocol with a 15-minute warm-up duration at 60% of maximal aerobic speed (MAS), $\mathrm{VVO}_{2 \text { max }}$ or $\mathrm{V}_{\text {peak }}{ }^{4,5,17}$. Other studies used different warm-up durations ($\mathrm{t}_{\text {lim10 }}$ and $\left.\mathrm{t}_{\text {lim5 }}\right)^{5,18,19}$, but none omitted the warm-up $\left(\mathrm{t}_{\text {lim }}\right)$. This is the first study to investigate performance in a protocol for determining $\mathrm{t}_{\text {lim }}$ without a previous warm-up and compared it with the standard protocol $\left(\mathrm{t}_{\text {lim15 }}\right)^{4}$. Our results demonstrated that the runners participated for a longer duration in the protocol without a warm-up than in the protocol with a warm-up. This result was similar to those of Da Cruz et al. ${ }^{5}$ and Bertuzzi et al. ${ }^{18}$, who used shorter warm-up protocols (i.e., $t_{\text {lim10 }}$ and $t_{\text {lims }}$) when testing untrained young men and recreational long-distance runners, respectively. When investigating the influence of different warm-up durations on determining $t_{\text {lim }}$ (i.e., $t_{\text {lim } 15^{5}}, t_{\text {lim10 } 0^{\prime}} \mathrm{t}_{\text {lims }}$), Da Cruz et al. 5 reported a longer participation time in the protocol with a shorter warm-up duration for $\mathrm{t}_{\text {lim }}$ determination. Similarly, Bertuzzi et al. ${ }^{18}$ observed that the participants remained in the protocol with a 5-minute warm-up longer than they did in the protocol with a 10 -minute warm-up. Thus, a longer warm-up time for the $\mathrm{t}_{\text {lim }}$ determination showed a negative effect on test duration and may be a tiring factor prior to exercise. The longer warm-up duration seems to cause greater physiological wear in the participants at the beginning of the test as demonstrated by the higher values of HR and RPE in the $t_{\text {lim15 }}$ protocol than in the $t_{\text {limo }}$ protocol observed in the present study.

In addition to warm-up duration, $\mathrm{t}_{\text {lim }}$ seems to be influenced by participant fitness level since there was an inverse correlation between MAS and $t_{\text {lim }}{ }^{4,20,21}$. Renoux et al. ${ }^{20}$ reported a mean $t_{\text {lim } 15}$ value of 4.5 ± 1.3 minutes in trained runners, similar to that observed by Billat et al.4 (i.e., 5.01 ± 0.9 minutes) in a study of trained runners that showed a shorter $\mathrm{t}_{\mathrm{lim}}$ duration than the results of our study for the $\mathrm{t}_{\text {lim } 15}$ protocol (i.e., 6.0 ± 2.0 minutes) as well as the study of Da Cruz et al. ${ }^{5}$ (i.e., 5.9 ± 1.7 minutes) that evaluated untrained young males. These results show that it is possible to observe a difference in $\mathrm{t}_{\mathrm{l} \text { im }}$ duration despite use of the same protocol $\left(\mathrm{t}_{\text {lim15 }}\right)$ due to differences in participant fitness levels.

Since $t_{\text {lim }}$ is a variable that is used to determine the optimal stimulus durations in interval training sessions ${ }^{9-11}$, this longer duration found by a lack of a warm-up will directly impact this prescription. Previous studies using $\mathrm{t}_{\mathrm{l} \text { im }}$ to prescribe interval training showed that if these sessions do not have the ideal duration, runners may not complete the training and/or show no improvement because of a low stimulus intensity ${ }^{10,11,22}$. Billat et al. ${ }^{10}$ tested the training effect in that the stimuli had a duration of 50% of $t_{\text {lim }}$ in $\mathrm{VVO}_{2 \text { max }}$ in the interval training sessions, and no differences were found in the aerobic variables associated with performance after 4 weeks of training. Similarly, some authors ${ }^{11,22}$ tested different combinations of $\mathrm{VVO}_{2 \text { max }}$ and its respective $\mathrm{t}_{\text {lim }}$ for individualized training with series of 60 and 75%; 60 and 70% of $\mathrm{t}_{\text {lim }}$ in $\mathrm{VVO}_{2_{\text {max }}}$ respectively. As a result, performance improvements were observed only for the groups that trained with the series duration at 60% of $\mathrm{t}_{\mathrm{lim}}$ in $\mathrm{VVO}_{2 \text { max }}$. The results of these studies suggest that small changes in $t_{\text {lim }}$ duration can have a great impact on the training prescription. Thus, the correct choice of the
protocol for determining the $\mathrm{t}_{\text {lim }}$ is important because the warm-up time (its lack or presence) will directly affect the $\mathrm{t}_{\text {lim }}$ duration and, therefore, the training prescription.

Regarding $H R, R P E$, and lactate concentration responses during the test, the protocols with different warm-up durations (i.e., $\mathrm{t}_{\text {lim } 0}$ and $\mathrm{t}_{\text {lim } 15}$) were not expected to affect the maximal variables $\left(H R_{\text {max }}, R P E_{\text {max }}\right.$ and $\left.L A_{\text {peak }}\right)$. However, when the during the test HR and RPE responses were analyzed during the different warm-up times, we obtained smaller values in the $t_{\text {lim } 0}$ protocol compared to the $t_{\text {lim } 15}$ protocol. A similar result was found by Da Cruz et al. ${ }^{5}$, who observed higher values for these variables in the protocol with a 15-minute warm-up compared to protocols with 5- and 10-minute warm-ups. This change can be explained by the increase in cardiovascular activity after exercises with durations > 10 minutes caused by changes in thermoregulatory mechanisms, energy substrates, and increased blood flow ${ }^{23,24}$, which also affected the participants final performances.

Despite the important findings of our study, one limitation was that the determination of the $\mathrm{V}_{\text {peak }}$ (and warm-up based on $\mathrm{V}_{\text {peak }}$) could led to different individual intensities relative to the velocity of anaerobic threshold (vAT). Thus, despite of $\vee_{\text {peak }}$ and vAT are correlated with endurance running performance ${ }^{12,25}$ no previous study examined the relationship between $V_{\text {peek }}$ and vAT. Future studies should investigate the relationship between $V_{\text {peak }}$ and $v A T$ and to better understand how differences in relative intensities of vAT could affect the time limit performance.

Conclusion

Therefore, we conclude that the lack of a 15-minute warm-up, based on the protocol proposed by Billat et al. ${ }^{4}$, for determining $t_{\text {lim }}$ leads to a longer test duration at 100% of $\mathrm{V}_{\text {peak }}$ and modifies the responses during the test variables (HR, RPE) in untrained men. This result may impact or interfere with the use of $t_{\text {lim }}$ for interval training prescriptions. Hence, we suggest that further studies should be performed in training protocols with different warm-up durations to evaluate the impact of the use of time limits.

Conflict of interest

The authors do not declare a conflict of interest.

Bibliography

1. Salgado JVV, Chacon-Mikahil MPT. Corrida de rua: análise do crescimento do número de provas e de praticantes. Conexões: Educ. Fís., Esporte e Saúde. 2006;4:90-9.
2. Nakamura FY, Moreira A, Aoki MS. Monitoramento da carga de treinamento: a percepção subjetiva do esforço da sessão é um método confiável? Rev. Educ. Fís/UEM. 2010;21:1-11.
3. Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance. Sports Med. 2007;37:857-80.
4. Billat VL, Renoux JC, Pinoteau J, Petit B, Koralsztein JP. Times to exhaustion at 100% of velocity at $\mathrm{VO}_{2 \max }$ and modeling of the time-limit/velocity relationship in elite longdistance runners. Eur J Appl Physiol. 1994;69:271-3.
5. Da Cruz VHM, Peserico CS, Machado FA. Effect of prior warm-up duration on the time limit at peak speed in untrained men. J Sports Med Phys Fitness. 2017;57:1276-81.
6. Wallmann HW, Christensen SD, Perry C, Hoover DL. The acute effects of various types of stretching (static, dynamic, ballistic, and no stretch) of the iliopsoas on 40-yard sprint times in non-athletes. Int J Sports Phys Ther. 2012;7:540-7.
7. Donahue RB, Vingren JL, Duplanty AA, Levitt DE, Luk HY, Kraemer WJ. Acute Effect of Whole-Body Vibration Warm-up on Footspeed Quickness. J Strength Cond Res. 2016;30:2286-91
8. Tomaras EK, Macintosh BR. Less is more: standard warm-up causes fatigue and less warm-up permits greater cycling power output. J Appl Physiol. 2011;111:228-35.
9. Manoel FA, da Silva DF, de Lima JRP, Machado FA. Peak velocity and its time limit are as good as the velocity associated with $\mathrm{VO}_{2 \max }$ for training prescription in runners. Sports Med Int Open. 2017;1:E8-E15.
10. Billat VL, Flechet B, Petit B, Muriaux G, Koralsztein JP. Interval training at $\mathrm{VO}_{2 \text { max }}$: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc. 1999;31:156-63
11. Smith TP, Mcnaughton LR, Marshall KJ. Effects of 4-wk training using $\mathrm{V}_{\max } / \Gamma_{\text {max }}$ on $\mathrm{VO}_{2 \text { max }}$ and performance in athletes. Med Sci Sports Exerc. 1999;31:892-6.
12. Machado FA, Kravchychyn AC, Peserico CS, da Silva DF, Mezzaroba PV. Incremental test design, peak "aerobic" running speed and endurance performance in runners. J Sci Med Sport. 2013;16:577-82.
13. Kuipers H, Rietjens G, Verstappen F, Schoenmakers H, Hofman G. Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med. 2003;24:486-91.
14. Astrand PO. Experimental studies of physical working capacity in relation to sex and age. Copenhagen: Ejnar Munksgaard. 1952; p. 23-27, 92-102.
15. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37:153-6.
16. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exer. 1982;14:37781.
17. Da Silva DF, Simões HG, Machado FA. vVO versus Vpeak, what is the best predictor of running performances in middle-aged recreationally-trained runners? Sci Sports. 2015;30: e85-e92.
18. Bertuzzi RC, Bueno S, Pasqua LA, Acquesta FM, Batista MB, Roschel H, et al. Bioenergetics and Neuromuscular Determinants of the Time to Exhaustion at Velocity Corresponding to $\mathrm{VO}_{2 \max }$ in Recreational Long-Distance Runners. J Strength Cond Res. 2012;26:2096-102.
19. Caputo F, Denadai B. Resposta do VO_{2} e tempo de exaustão durante a corrida realizada na velocidade associada ao $\mathrm{VO}_{\text {max }}$: aplicações para o treinamento aeróbio de alta intensidade. Rev Bras Cienc Esporte. 2004;26:19-31.
20. Renoux JC, Petiti B, Billat V, Koralsztein. Oxygen Deficit is Related to the Exercise Time to Exhaustion at Maximal Aerobic Speed in Middle Distance Runners. Arch Physiol Biochem. 1999;107:280-5.
21. Kachouri M, Vandewalle H, Huet M, Thomaidis M, Jousselin E, Monod H. Is the exhaustion time at maximal aerobic speed an index of aerobic endurance? Arch Physiol Biochem. 1996;104:330-6.
22. Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O_{2} uptake and the time for which this can be maintained. Eur J Appl Physiol. 2003;89:337-43.
23. Coyle EF. Cardiovascular drift during prolonged exercise and the effects of dehydration. Int J Sports Med. 1998;19:121-4.
24. Buchfuhrer MJ, Hansen JE, Robinson TE, Suedy DY, Wasserman MJ, Whipp BJ. Optimizing the exercise protocol for cardiopulmonar assessment. J App/ Physiol. 1983;55:1558-64.
25. Machado FA, de Moraes SM, Peserico CS, Mezzaroba PV, Higino WP. The Dmax is highly related to performance in middle-aged females. Int J Sports Med. 2011;32:672-6.

[^0]: Correspondencia: Fabiana Andrade Machado
 E-mail:famachado_uem@hotmail.com;famachado@uem.br

